
of ~. The distribution of magnetic field intensity H x is given in Fig. 4 [i) ~ = 0.0125; 
2) ~ = 4.137, U e = 0.2.105 cm/sec]; and V, ~, v H are considered to be power series functions 
of the density and temperature. 

The above program was chosen because of the capabilities of the M-222 computer memory. 
It may seem that the use of matrix forcing for simultaneous computation of all the desired 
quantities would lead to more rapid solution of the problem. It should be noted that, while 
the accuracy of the increase of the vertical velocity component is not important in calculat- 
ing the unsteady boundary layer for an incompressible liquid, and the results vary only by a 
few Percent when this is totally omitted; nevertheless, this component requires accurate com- 
putation for a compressible liquid. 

1. 

2. 

3. 
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INTERNAL RESONANCES IN HYDRODYNAMICS 

Yu. B. Ponomarenko UDC 534.533.6.011 

w In the theory of the vibrations of systems close to linear [I], internal resonance 
is defined as the proportionality of several natural frequencies to natural numbers. The 
present article discusses internal resonances in hydrodynamics. 

In the case of internal resonance, forced vibrations of small amplitude, brought about 
by a harmonic perturbation, can differ considerably from harmonic. An example is discontin- 
uous vibrations of a gas (shock waves), observed in a closed tube with a harmonic motion of 
a piston [2, 3]. 

Autovibrations of small amplitude can also be essentially nonharmonic, for example, au- 
tovibrations in a low-pressure gas discharge [4]. 

The main features of resonances come out with the consideration of the boundary-value 
problem for the real vector X: 

OX n 
o'--i + L1X + L2X2 + . . . .  ~, ehC~e~~ c.c., UX = 0 (1.1) 

(c.c. is an expression, complex-conjugate to the preceding). Here the real coefficients L 
and the matrix U in the boundary condition can depend on the coordinates x and are polyno- 
mials with respect to D = ~/~x. The region of change of x is assumed to be bounded. Each 
perturbation with the frequency mk > 0 and the form Ck(x ) is proportional to a small ampli- 
tude e k. The frequencies mk and their differences are assumed to be fairly great (the ef- 
fects of the type of slow change in the parameters are not taken into consideration here). 
It is postulated that the problem 

p X  -~ L1X = 0 ,  UX = 0  (1.2) 

has several simple eigennumbers p = y + i~, with small increments of y and positive frequen- 
cies ~. Let these be the numbers Pm (m = i, 2, , M), the corresponding eigenfunctions 
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Xm, and the eigennumbers of the conjugate problem Zm; the increments of the other eigenvalues 
are negative and fairly large. 

Since the numbers Pm are almost imaginary, they are approximately proportional to some 
natural numbers. The conditions with which such a proportionality is real are discussed be- 
low. 

It is obviously always possible to select whole numbers amk, bm so that 

P-m ~" ( a . i o l  -~- . . . +  amno)a)/b. ~ V m .  

The resonance vibrations characterized by these numbers correspond to the solution 

X = [ , .~1  XmQ" exp  iVmt + h=t' Ynek exp  icokt + c.c. ,  - "  . . .  (1.3) 

in the form of a power series in terms of values of Qm exp iVmt , Ck exp imkt and the complex- 
conjugate values, with coefficients depending only on x. The equation for the amplitude of 
Qm(t) is also sought in the form of a series in terms of values of Qr, ek and the conjugate 
values. This equation has the form 

dQ,,/dt = Q m ( 6 , - : -  . . . ) - { -  ~.~ ~e~V~V . . . .  (pm~.. .-i-  . . . )  ( 1 . 4 )  

(bin = p m  - -  ivm, m = l . . . . .  M) ,  

where series in powers of IQrl 2, I~kI 2 stand in parentheses; the sum is taken over all the 
natural numbers a, b, c, . . , satisfying the nonidentical equalities 

Vm -- ao,= _L - -  bcoo - -  + cv s + - -  dvt - -  

The identity 9m = 9m corresponds to the series standing before the sum; the terms of this 
series describe nonresonance effects, existing with any given values of v m. 

As in the case of autonomous systems [5] with M = i, the coefficients in (1.3) are de- 
termined consecutively from linear inhomogeneous boundary-value problems, obtained after sub- 
stituting (1.3), (1.4) into (i.i). The coefficients in (1.4) are determined from the condi- 
tion of the boundedness, as 6m + 0, of the corresponding coefficients in (1.3). This condi- 
tion has the form 

S o, (15) 

where ~ is a free t e r m  of the inhomogeneous problem, depending linearly on the sought coeffi- 
cient in (1.4); the integration is carried out over the region of change in x. 

To find the coefficient Pme. . of Eq. (1.4), in (i.i) it is necessary to take account 
of all the terms of the series with powers~N = ~ + b + c + ...; to find the greatest non- 
resonance terms in (1.4), it is sufficient to retain the quadratic and cubic terms in (i.i). 
From this it can be seen that the resonance effects are considerable if the order of the 
resonance N ~3. Nonresonance effects predominate* if the order of the resonances N > 3. 

In simple examples, it is possible to evaluate the steady-state solutions of (1.4) and, 
by the same token, to clarify the effect of resonances on the amplitude (but not on the sta- 
bility) of the vibrations. Let, for example, in (I.i), (1.2) the numbers n = i, M = 2; here 
p= = i~2 = 9p,, ~I = ~; then, in vibrations with the frequency ~, resonance of the ninth order 
is insignificant, since Q= ~ QI 7 ~ Q, ~ e*/3. If, in distinction from the preceding case, 
there is a third number Ps = 3p, = p2/3, then all three amplitudes % e */3 

Above, for determinacy, problem (i.i) has been discussed with a linear homogeneous bound- 
ary condition. It is frequently possible to bring problems with other conditions into the 
form (i.i) by the introduction of new variables (for example, in the case of a linear inho- 
mogeneous condition, X = X ~ + A is used, where A is some function, satisfying the inhomoge- 
neous condition). However, such an approximation is not needed. For each type of resonance 

*Exceptional cases are possible [for example, where some coefficients are equal to zero in 
(1.4) ]. 
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the series (1.3), (1.4) do not change their structure, if the equations and boundary condi- 
tions for X are represented in the form of power series in terms of the components of X, 
their derivatives with respect to t, x, and the perturbations ek exp (imkt). For the coeffi- 
cients in (1.3) there will be obtained problems with inhomogeneoffs conditions; homogeneity of 
the conditions can be achieved (if necessary) by the method noted above. 

Problems with nonanalytical nonlinearities (for example, of the kind XnIXm[ ) require a 
special discussion. 

To bring out the principal laws of resonance, it is sufficient to retain only the largest 
terms in (1.4). In this basic approximation, the frequency differences ~m (by definition, 
the resonances are small) are taken into account only by the terms Qm~m; in the coefficients 
of the remaining terms, it is assumed that Pm = i~m = i~m (m = i, .., M), so as not to go 
beyond the accuracy of the approximation. In the examples given above, the resonances are 
considered in the basic approximation. 

w As an example, let us consider the problem of finding X = ($, w) from the equations 

~.+w'=O, w.+~'+O'=O(O~<x~<l) ,  
r = w i / ~  + (p~ - I ) t ~  - ~ = w ~ + t12 (p  - t ) ~  ~ + . . .  ( 2 .  z )  

and the boundary conditions 

(W)o = ~l', (w)~ = O. ( 2 . 2 )  

Here a dot indicates differentiation with respect to t and a prime, with respect to x. Writ- 
ten in dimensionless form (so that, with s = 0, the length of the tube, the density P = i + ~, 
the pressurepB, and the speed of sound are equal to unity), the problem (2ol), (2.2) describes 
the vibrations of a gas in a closed tube, excited by the motion of a piston.* The form of the 
displacement of the piston 

I(mt) = E l m  exp (immt) ( l -m - l m ,  l o = O) ( 2 . 3 )  

can be (in distinction from [6, 7]) anharmonic. The natural frequencies of the linear homo- 
geneous problem (2.1), (2.2) are equal to ~m, where m is a whole number; therefore, there 
exists an infinite number of internal resonances of the second order. 

The expansions (1.3), (1.4) for the problem (2.1), (2.2) are found in the form 

- X e ira~ X = Al q- Ai  + A3 + . . . ,  Al  = ~.~(~m ,,~ 

X ~  = (cos m a x , - -  i sin max),  Q - m  = Qm, (2.4) 

dQm/dt =- im(~ - -  oJ)Qm ~- am ? . . . .  

Here the sum is taken over all whole numbers m; the eigenfunctions X m correspond to the nat- 
ural frequency ~m. It is convenient to determine the series (2.4), assuming that Qm ~ cI/2, 
_ ~ e~/2, Am ~ cm/=; the coefficients a m ~ e are determined from the condition of the 

boundedness of Ai. 

The vector A2 is determined from the conditions (2.2) and the equation 

A'2 + BA'~ + O'iE ~- ~ amX,~ exp irao)t = O, (2.5) 

, :(o), 
where ~, wl are the components of At. 

*Replacement of the exact solution for the piston (w = pel" with = el) by the approximation 
(2.2) does not decrease the exactness of the basic approximation (see Sec. i). 
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Setting in (2.2), (2.5) 

A~ = ~ (r~ + ~z~r~) e ~ ,  

(1)2 = ~ F~e ~'~t, �9 = [t, imeo(l  -- x)L 

we obtain for Ym the homogeneous conditions (2.2) and the equation ~ 

fmo~Ym -F B Y ' ~  "-F ~F = O, ~F = amX m q- e [F',,, - -  rn2(o2lmg(i - -  x)]. 

(2.6) 

(2.7) 

As m § ~, the value of Ym is finite if condition (1.5) is satisfied. In the basic approxima- 
tion used (see Sec. I), it is sufficient to find a m with m = ~. From (1.5), (2.5)-(2.7), 
taking account of the equality Z m = Xm, there is obtained 

0 

With m = 0, from (2.4), (2.8) it follows that Qo = 0 (in accordance with the conservation of 
the total mass of gas in the tube). For other stationary amplitudes, after introduction of 
the notation 

~ = s e / ( l  --i- ~), I,, ~ 4(I - (o /n) / r t ( l  i -  ~); l,,, = Q~/r t  (m--~  ()) 

the following equations are obtained: 

lm--~ :L6~,m (m ::0, := t ; . . . ) ,  (2.9)  
it 

in  which L i s  a p o s i t i v e  pa ramete r .  The dependences of  the  ampl i tudes  fm on the  r e l a t i v e  
f requency  d i f f e r e n c e  J~o i s  most c o n v e n i e n t l y  found in  pa rame t r i c  form, de t e rmin ing  the  ampl i -  
tude and the  f requency  d i f f e r e n c e  from (2.9)  as f u n c t i o n s  of  L. 

Equations (2.9) are equivalent to the equation 

1~ L -  /(8) (2 .10 )  

for the real nonperiodic function 

] (0) ---- ~ .free ira~ (2.11) 

The form of  the  d i sp lacemen t  o f  the  p i s t o n  l (8 )  i s  de termined in (2 .3 ) .  The f requency d i f -  
f e r ence  f o ,  the  parameter  L, and the  s o l u t i o n  X a re  expressed  in  terms of  f i n  the form 

2,~ 2 ; t  

~ ~dO, L = T . ~ ,  /o 2n �9 
U 0 

X ~ AI = (I/2)p(/+ 4-/- -- 210, /- --/+), 1:~_ =/((or 4- ~x). (2.13) 

The results of [6, 7] are expanded for the case of an anharmonic discontinuous form 
of I in the following manner. Let I(8) ~i; then the continuous solution of (2.10) 

f = (/0/i/01)lL - -  zlt/2 (L ~ 1, I/d > ] ,  = foOD (2.14) 

is singular and corresponds to the frequency difference fo(L), determined from (2.12). 

With [fol < f,, only discontinuous solutions of (2.10) are possible. The only solutions 
of interest are those describing compression shock waves [2] (after the passage of a compres- 
sion wave, the density at a given point rises). Insuch admissible solutions, in accordance 

tSTnce the value of Ym does not depend explicitly on t and is quadratic with respect to Qn(t), 
Y~ A2 and therefore does not enter into (2.7). 
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with (2.13), the function f(8), with a rise in e, can increase jumpwise, but cannot decrease 
jumpwise.% 

If, in the interval 0~8 < 2~, the value Z = i is assumed at the singular point 8 = 0o, 
then the admissible solution 

/..=[i.ll~/2[--I Oo<~O<r 
[ 1 sp~ .O~<Oo+2n  

(0 ~ q~ <~ 2~, Ilol <~ I,) 

(2.15) 

is singular and corresponds to the frequency difference fo(@, determined from (2.12). 

An arbitrary frequency difference corresponds to one of the solutions (2.14), (2.15). 
Figure 1 shows the form of these solutions near fo ~- ~, for 

l(0) = u c o s 0  + (l - -  ~) cos 30 ( 0 < a < < t ,  l ~  l(0) = t). (2 .16)  

The c u r v e  o f  f (O,  f , )  i s  shown by t he  p o i n t s .  

In  a d d i t i o n  to  ( 2 . 1 4 ) ,  ( 2 . 1 5 ) ,  w i t h  a g i v e n  f r e q u e n c y  d i f f e r e n c e ,  t h e r e  e x i s t s  an i n f i -  
m i t e  s e t  o f  d i s c o n t i n u o u s  s o l u t i o n s  o f  ( 2 . 1 0 ) ;  t h e y  a l l  c o n t a i n  a t  l e a s t  one r a r e f a c t i o n  shock  
wave and ,  c o n s e q u e n t l y ,  a r e  n o t  a d m i s s i b l e .  

I f  t h e  v a l u e  Z = 1 i s  a t t a i n e d  i n  t h e  i n t e r v a l  [0,  2~] a t  s e v e r a l  p o i n t s ,  t h e n ,  w i t h  
[ fo]  < f , ,  t h e r e  e x i s t s  an i n f i n i t e  s e t  o f  a d m i s s i b l e  s o l u t i o n s ,  d i f f e r i n g  i n  t he  number,  

v a l u e ,  and mutua l  a r r a n g e m e n t  o f  the  shock  waves .  F i g u r e  2 shows s e v e r a l  s o l u t i o n s  1-4 f o r  
a = 0 i n  (2 .16 )  and f o  = 0. 

I n  t he  e x p e r i m e n t s  o f  [3,  6,  7 ] ,  o n l y  s y m m e t r i c a l  v i b r a t i o n s  o f  t y p e  1 were  o b s e r v e d .  
A p o s s i b l e  r e a s o n  i s  t he  i n s t a b i l i t y  o f  o t h e r  t y p e s  o f  v i b r a t i o n s .  Ano the r  p o s s i b i l i t y  i s  
t he  dependence  o f  t h e  t y p e  o f  v i b r a t i o n s  on t he  i n i t i a l  c o n d i t i o n s  and (or )  on t h e  means 
used  f o r  v a r y i n g  the  p a r a m e t e r s .  L e t ,  f o r  example ,  a t  t he  i n i t i a l  moment t h e r e  be g iven  the  
form ( 2 . 1 6 )  and t he  f r e q u e n c y  d i f f e r e n c e  f o  > f , ,  so t h a t  t h e r e  e x i s t  c o n t i n u o u s  v i b r a t i o n s  
( s e e  F i g .  1 ) .  Then v i b r a t i o n s  o f  t y p e  2 a r e  o b t a i n e d  i f  f i r s t  f o  and then  u a r e  s l o w l y  de-  
c r e a s e d  t o  z e r o .  I f  fo  + 0 w i t h  u = 0, t h e n ,  as  o b s e r v a t i o n s  [3,  6,  7] have  shown, ou t  o f  
a l l  t h o s e  p o s s i b l e ,  t h e r e  a r i s e  v i b r a t i o n s  o f  t y p e  1. 

I t  must  be n o t e d  t h a t  shock  waves h e a t  t he  g a s ;  t h i s  l e a d s  to  an o b s e r v e d  [3] i n c r e a s e  
in  t h e  r e s o n a n c e  f r e q u e n c y  (wi th  which  f o  = 0 ) .  S i n c e  t he  e v o l u t i o n  o f  h e a t  in  each shock  
wave i s  p r o p o r t i o n a l  to  t h e  cube o f  t he  v a l u e  o f  t h e  d i s c o n t i n u i t y  [ 2 ] ,  t he  h e a t i n g  and t he  
i n c r e a s e  in  t he  f r e q u e n c y  a r e  p r o p o r t i o n a l  to  ~3. The c o e f f i c i e n t  o f  p r o p o r t i o n a l i t y  depends 
on t h e  h e a t - t r a n s f e r  c o n d i t i o n s  and on t h e  t y p e  o f  v i b r a t i o n s ;  w i t h  fo  ~ r e ,  v i b r a t i o n s  o f  
t y p e  1 l e a d  to  t h e  l e a s t  h e a t i n g .  

w Le t  us c o n s i d e r  t h e  p r o b l e m  ( 2 . 1 ) ,  ( 2 . 2 ) ,  in  which the  second  b o u n d a r y  c o n d i t i o n  i s  
r e p l a c e d  by t h e  a p p r o x i m a t e  c o n d i t i o n  f o r  an open tube  (g) l = 0. For  s i m p l i c i t y ,  we assume 
that B = i. 

In the given case, there is an infinite number of internal resonances of the third order. 
The solution is represented by the expressions (2.4), in which ~ is replaced by (1/2)~, and 
m are odd numbers. Vibrations will be considered in which Qm ~ eI/3, Am ~ cm/3, 0~ - (I/2)~ 

e=/3. The coefficients a m ~ s are determined from the problem for A3. Preliminarily, it 
is required to find A2 = (~=, w=) from homogeneous conditions and Eq. (2.5), in which the sum 
is dropped; withm = (i/2)~, 

) absinb~l+2a~lcosan] m2 = -g- ~.~ . . . .  [~-~s - -  2 sin a~ + n--~ 
n,8 

(rl= t/2.r~x , a = n + s ,  b = n - - s ) .  

(3.1) 

Setting 

%The remaining relationships at a discontinuity [2], in the approximation (2.13), reduce to 
acoustical and are satisfied automatically. 
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f o r  Ym, w i t h  an odd v a l u e  o f  m, we o b t a i n  homogeneous  c o n d i t i o n s  and Eq. ( 2 . 7 ) ,  i n  which  t h e  
f a c t o r  ( 1 - -  x)  i s  d r o p p e d .  From ( 1 . 5 ) ,  ( 2 . 7 ) ,  ( 2 . 1 ) ,  ( 3 . 1 ) ,  ( 3 . 2 ) ,  w i t h  ~ = ~ / 2 ,  Z m = Xm, 
we o b t a i n  

a m =  T i n m  elm-- Q~ '~IQ,~I2+ 1 " 7 ~ .  Q~Q,~Qm-,,-s . 
Sin 

( 3 . 3 )  

After introduction of the notation 

~3 _= _ (24/5)e, fm = Q, /p ,  r ---- (16/5)(2(o/~ - -  l)/~t ~ (3.4) 

for the stationary amplitudes, from (2.4), (3.3) it follows that 

/ E / s f ~ f m - , - ~  + 3/m (EI/  I S § r) + 2ira = 0. 

Fo r  t h e  f u n c t i o n  f i n  ( 2 . 1 1 ) ,  f rom ( 3 . 5 )  i t  f o l l b w s  t h a t  

(3.5) 

]3 + 3p] -~- 2 q ( 0 )  = 0 ,  (3.6) 

where q is obtained from (2.3), discarding even harmonics, and 

2~ 

t S /~ + r. P = -"Ud- 
0 

(3.7) 

Since 7 contains only odd harmonics, the sought solutions of (3;6) must satisfy the condi- 
tion ~(e + 7) = -- 7(e). For X, (2.13) holds, where fo = 0. 

In what follows, it is assumed that q = I = cos e. Figure 3 shows the roots of Eq.(3.6) 
for 0 > p > -- I (curve i), p < -- i (curves 2-4), and p = -- I. With P~0, curve I is singu- 
lar and represents the solution 7. With p < -- i, the solution f is represented by curve 2. 
With -- i < p < O, all the singular solutions ~(e) are discontinuous and contain rarefaction 
waves (see Sec. 2); the discontinuities in one of the possible solutions are shown by the 

dashed line in Fig. 3. 

The absence of solutions containing only compression waves indicates that in the present 
problem, with a decrease in the viscosity and the thermal conductivity, the width of the front 
in the shock wave remains finite and is determined by some physical effect which does not 
bring about heating of the gas. Such an effect is radiation from the open end of the tube. 

To take account of radiation, in Eq. (2.4) for Qm, (i/2)~m must be replaced by the nat- 
ural frequency, changed by the radiation. The change comes down [8] to multiplication of 
(i/2)vm by 

I --  clR -{- imc2R 2. ( 3 . 8 )  
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Here ci,2 ~ i are positive constants (for example, cI ~ 8/(3~), c2~ ~/4 for a tube with a 
flange [8]); it is postulated that the radius of the tube R ~ I. 

Taking account of (3.8) leads to the replacement of (3.4), (3.6) by 

r = (16/592)(2m/n - -  i + c~R), / 3 + 3pf  + 2q = zd//dO ( 3 . 9 )  

(X = 4 8 R ~ J 5 ~ 2 )  �9 

The effects of radiation are small in comparison with nonlinear effects with ~ ~ i, which is 
assumed to be satisfied. 

An examination of the field of the directions of Eq. (3.9) shows that, with s = p + i 
• the periodic "curve of f is close to the discontinuous curve in Fig. 3 (the width of the 

"discontinuity" is ~ ~). The integral curve, departing from c and intersecting the straight 
line a b  at the point 0, has the slope f' = 2(cQs 0 --cos 0a)/X ~ I; from this it follows that 
e -- e a ~ X ~ 0 a- Intersection with 0 = 0 and tangency at the point b takes place with val- 
ues s ~ • where the discontinuous periodic curve is deformed into curve 2. 

The frequency dependence r(p) is determined from (3.7). Figure 4 shows qualitatively 
the dependence r(p) with X > 0, with X = + 0, and the asymptote r = p (solid, dashed, and 
dashed-dot lines, respectively). The distance between the extrema of the curves ~ X. The 
values of p, where dr/dp < 0, are not realized; the directions of the shock waves p(r) are shown 
by arrows. In addition to the amplitude, with discontinuities of the parameter p, the form 
of the vibrations changes considerably. 

The above discussion can be extended without ambiguity to the case of an anharmonic form 
of q(e). Specifically, if q changes sign at the point eo, then the number of discontinuities 
of f(0, p, X = + 0) in the interval [eo, ~ + 0o] is equal to the number contained in the [0o, 

+ 0~ intervals in which q2 + p3 changes sign and q does not change [for example, for (2.16), 
this number is equal to zero, unity, or three]. 
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